Establishing the functional connectivity of the frontotemporal network in pre-attentive change detection with Transcranial Magnetic Stimulation and event-related optical signal

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

4 Scopus Citations
View graph of relations

Author(s)

  • Long-Yin Yip
  • Troby Ka-Yan Lui
  • Xue-Zhen Xiao
  • Yang Wang
  • Winnie Chiu Wing Chu
  • Nathan Allen Parks
  • Sandra Sau-Man Chan
  • Sebastiaan Franciscus Wijnandus Neggers

Detail(s)

Original languageEnglish
Pages (from-to)403-413
Number of pages11
Journal / PublicationNeuroImage
Volume179
Online published19 Jun 2018
Publication statusPublished - 1 Oct 2018
Externally publishedYes

Link(s)

Abstract

Current theories of pre-attentive deviant detection postulate that before the Superior Temporal Cortex (STC) detects a change, the Inferior Frontal Cortex (IFC) engages in stimulus analysis, which is particularly critical for ambiguous deviations (e.g., deviant preceded by a short train of standards). These theories rest on the assumption that IFC and STC are functionally connected, which has only been supported by correlational brain imaging studies. We examined this functional connectivity assumption by applying Transcranial Magnetic Stimulation (TMS) to disrupt IFC function, while measuring the later STC mismatch response with the event-related optical signal (EROS). EROS can localize brain activity in both spatial and temporal dimensions via measurement of optical property changes associated with neuronal activity, and is inert to the electromagnetic interference produced by TMS. Specifically, the STC mismatch response at 120–180 ms elicited by a deviant preceded by a short standard train when IFC TMS was applied at 80 ms was compared with the STC mismatch responses in temporal control (TMS with 200 ms delay), spatial control (sham TMS at vertex), auditory control (TMS pulse noise only), and cognitive control (deviant preceded by a long standard train) conditions. The STC mismatch response to deviants preceded by the short train was abolished by TMS of the IFC at 80 ms, while the STC responses remained intact in all other control conditions. These results confirm the involvement of the IFC in the STC mismatch response and support a functional connection between IFC and STC.

Research Area(s)

  • TMS, EROS, Functional connectivity, MMN, Change detection, Frontotemporal network, AUDITORY CHANGE-DETECTION, NEAR-INFRARED SPECTROSCOPY, FRONTAL-CORTEX ACTIVATION, MEMORY-TRACE FORMATION, CONCURRENT TMS-FMRI, MISMATCH NEGATIVITY, EVOKED-POTENTIALS, DEVIANCE DETECTION, SENSORY MEMORY, BRAIN ACTIVITY

Citation Format(s)

Establishing the functional connectivity of the frontotemporal network in pre-attentive change detection with Transcranial Magnetic Stimulation and event-related optical signal. / Tse, Chun-Yu; Yip, Long-Yin; Lui, Troby Ka-Yan; Xiao, Xue-Zhen; Wang, Yang; Chu, Winnie Chiu Wing; Parks, Nathan Allen; Chan, Sandra Sau-Man; Neggers, Sebastiaan Franciscus Wijnandus.

In: NeuroImage, Vol. 179, 01.10.2018, p. 403-413.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

Download Statistics

No data available