Equivalent circuit derivation and performance analysis of a single-sided linear induction motor based on the winding function theory

Wei Xu, Guangyong Sun, Guilin Wen, Zhengwei Wu, Paul K. Chu

    Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

    99 Citations (Scopus)

    Abstract

    A linear metro that is propelled by a single-sided linear induction motor (SLIM) has recently attracted much attention. Compared with the rotating-induction-machine drive system, the SLIM drive has advantages such as direct thrust without needing friction between the wheel and the railway track, small cross-sectional area, lack of gear box, and flexible line choice on account of the greater climbing capability and smaller turning circle. However, due to its cut-open primary magnetic circuit, the SLIM has a longitudinal end effect and half-filled slots on the primary ends, which can reduce the air-gap average flux linkage and thrust. Based on the winding function method, the SLIM is supposed to have the following three groups of windings: 1) primary windings; 2) secondary fundamental windings; and 3) secondary end effect windings. The proposed method considers the actual winding distribution and structure dimensions. It can calculate the mutual, self, and leakage inductance to describe the influence of the longitudinal end effect and half-filled slots. Moreover, a new equivalent model is presented to analyze the different dynamic and steady-state performance. Comprehensive comparisons between simulation and experimental results that were obtained from both one arc induction machine and one linear metro indicate that the proposed model can be applied to predict the SLIM performance and control scheme evaluation. © 2012 IEEE.
    Original languageEnglish
    Article number6129446
    Pages (from-to)1515-1525
    JournalIEEE Transactions on Vehicular Technology
    Volume61
    Issue number4
    DOIs
    Publication statusPublished - 2012

    Research Keywords

    • Arc induction machine
    • dynamic-state performance
    • equivalent circuit model
    • half-filled slots
    • linear metro
    • longitudinal end effect
    • single-sided linear induction motor (SLIM)
    • steady-state performance
    • winding function method

    Fingerprint

    Dive into the research topics of 'Equivalent circuit derivation and performance analysis of a single-sided linear induction motor based on the winding function theory'. Together they form a unique fingerprint.

    Cite this