Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 274 |
Journal / Publication | Light: Science and Applications |
Volume | 11 |
Online published | 14 Sep 2022 |
Publication status | Published - 2022 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85139214687&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(d76774cb-65c3-4855-b807-6c1786adee69).html |
Abstract
Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit. [Figure not available: see fulltext.]
Research Area(s)
Citation Format(s)
Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. / Zhang, Zhedong; Peng, Tao; Nie, Xiaoyu et al.
In: Light: Science and Applications, Vol. 11, 274, 2022.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Download Statistics
No data available