Enhancing the bio-corrosion resistance of Ni-free ZrCuFeAl bulk metallic glass through nitrogen plasma immersion ion implantation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

8 Scopus Citations
View graph of relations

Author(s)

  • Her-Hsiung Huang
  • Hsun-Miao Huang
  • Mau-Chin Lin
  • Wei Zhang
  • Ying-Sui Sun
  • Peter K. Liaw

Detail(s)

Original languageEnglish
Pages (from-to)S660-S665
Journal / PublicationJournal of Alloys and Compounds
Volume615
Issue numberSuppl. 1
Early online date24 Jan 2014
Publication statusPublished - 5 Dec 2014
Externally publishedYes

Abstract

Improving the resistance of bulk metallic glass (BMG) to corrosion, particularly pitting, is crucial to the further development of this material. This study employed surface treatment based on nitrogen plasma immersion ion implantation (N-PIII) to enhance the bio-corrosion resistance of Ni-free Zr62.5Cu22.5Fe5Al10 BMG for application in bone implants. Resistance to bio-corrosion was evaluated by establishing potentiodynamic polarization curves in artificial saliva (AS) and simulated body fluid (SBF). Commercial pure Ti was used as the control. Results demonstrate that N-PIII treatment did not alter the bulk amorphous structure of Zr62.5Cu22.5Fe5Al10 BMG. Following N-PIII treatment, a nitride-containing 15 nm thick oxide film was formed on the BMG. This film significantly improved resistance to bio-corrosion in both AS and SBF solutions. The N-PIII-treated BMG presented lower corrosion rates (50-67% less) and higher corrosion potential (800-1100 mV more) than that observed in untreated BMG and Ti. The N-PIII treatment also significantly improved resistance of the BMG to pitting (increased pitting potential by 500-700 mV). This is the first report of the outstanding resistance of Ni-free Zr-based BMG to bio-corrosion (i.e. corrosion rate 0.01 μA/cm2; pitting potential >1200 mV; corrosion potential >270 mV) in simulated biological environments.

Research Area(s)

  • Bio-corrosion resistance, Ni-free Zr-based bulk metallic glass, Nitrogen plasma immersion ion implantation, Pitting corrosion

Citation Format(s)

Enhancing the bio-corrosion resistance of Ni-free ZrCuFeAl bulk metallic glass through nitrogen plasma immersion ion implantation. / Huang, Her-Hsiung; Huang, Hsun-Miao; Lin, Mau-Chin; Zhang, Wei; Sun, Ying-Sui; Kai, Wu; Liaw, Peter K.

In: Journal of Alloys and Compounds, Vol. 615, No. Suppl. 1, 05.12.2014, p. S660-S665.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review