Abstract
Here, we design and engineer an axially asymmetric GaAs/AlGaAs/GaAs (G/A/G) nanowire (NW) photodetector that operates efficiently at room temperature. Based on the I-type band structure, the device can realize a two-dimensional electron-hole tube (2DEHT) structure for the substantial performance enhancement. The 2DEHT is observed to form at the interface on both sides of GaAs/AlGaAs barriers, which constructs effective pathways for both electron and hole transport in reducing the photocarrier recombination and enhancing the device photocurrent. In particular, the G/A/G NW photodetector exhibits a responsivity of 0.57 A/W and a detectivity of 1.83 × 1010 Jones, which are about 7 times higher than those of the pure GaAs NW device. The recombination probability has also been significantly suppressed from 81.8% to 13.2% with the utilization of the 2DEHT structure. All of these can evidently demonstrate the importance of the appropriate band structure design to promote photocarrier generation, separation, and collection for high-performance optoelectronic devices.
Original language | English |
---|---|
Pages (from-to) | 2654-2659 |
Journal | Nano Letters |
Volume | 20 |
Issue number | 4 |
Online published | 26 Feb 2020 |
DOIs | |
Publication status | Published - 8 Apr 2020 |
Research Keywords
- AlGaAs
- GaAs
- nanowire
- photodetector
- photoresponse
- two-dimensional electron-hole tube