Enhanced Sulfate Production by Nitrate Photolysis in the Presence of Halide Ions in Atmospheric Particles

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

1 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)3831-3839
Journal / PublicationEnvironmental Science & Technology
Volume54
Issue number7
Online published3 Mar 2020
Publication statusPublished - 7 Apr 2020

Abstract

Heterogeneous oxidation of SO2 is an effective production pathway of sulfate in the atmosphere. We recently reported a novel pathway for the heterogeneous oxidation of SO2 by in-particle oxidants (OH, NO2, and NO2-/HNO2) produced from particulate nitrate photolysis (Environ. Sci. Technol. 2019, 53, 8757-8766). Particulate nitrate is often found to coexist with chloride and other halide ions, especially in aged sea-salt aerosols and combustion aerosols. Reactive uptake experiments of SO2 with UV-irradiated nitrate particles showed that sulfate production rates were enhanced by a factor of 1.4, 1.3, and 2.0 in the presence of Cl-, Br-, and I-, respectively, compared to those in the absence of halide ions. The larger sulfate production was attributed to enhanced nitrate photolysis promoted by the increased incomplete solvation of nitrate at the air—particle interface due to the presence of surface-active halide ions. Modeling results based on the experimental data showed that the nitrate photolysis rate constants increased by a factor of 2.0, 1.7, and 3.7 in the presence of Cl-, Br-, and I-, respectively. A linear relation was found between the nitrate photolysis rate constant, jNO3-, and the initial molar ratio of Cl- to NO3-, [Cl-]0/[NO3-]0, as jNO3- = 9.7 X 10-5[Cl-]0/[NO3-]0 + 1.9 X 10-5 at [Cl-]0/[NO3-]0 below 0.2. The present study demonstrates that the presence of halide ions enhances sulfate production produced during particulate nitrate photolysis and provides insights into the enhanced formation of in-particle oxidants that may increase atmospheric oxidative capacity.