Enhanced Self-Assembly of Crystalline, Large-Area, and Periodicity-Tunable TiO2 Nanotube Arrays on Various Substrates

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

12 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)6265-6272
Journal / PublicationACS Applied Materials & Interfaces
Volume9
Issue number7
Online published1 Feb 2017
Publication statusPublished - 22 Feb 2017

Abstract

Due to their superior physical properties, titanium dioxide (TiO2) nanotube arrays are one of the most investigated nanostructure systems in materials science until now. However, it is still a great challenge to achieve damage-free techniques to realize controllable, cost-effective, and high-performance TiO2 nanotube arrays on both rigid and flexible substrates for different technological applications. In this work, we demonstrate a unique strategy to achieve self-assemble crystalline, large-area, and regular TiO2 nanotube arrays on various substrates via hybrid combination of conventional semiconductor processes. Besides the usual applications of TiO2 as carrier transport layers in thin-film electronic devices, we demonstrate that the periodic TiO2 nanotube arrays can show the effect of optical grating with large-area uniformity. Specifically, the fabricated nanotube geometries, such as the tube height, pitch, diameter, and wall thickness, as well as the crystallinity can be reliably controlled by varying the processing conditions. More importantly, utilizing these nanotube arrays in perovskite solar cells can further enhance the optical absorption, leading to improved power conversion efficiency. In contrast to other typical template-assisted fabrication approaches, we employ a soft template here, which would enable the construction of nanotube arrays without any significant damage associated with template removal. Furthermore, without the thermal restriction of underlying substrates, these crystalline nanotube arrays can be transferred to mechanically flexible substrates by a simple one-step method, which can expedite these nanotubes for potential utilization in other application domains.

Research Area(s)

  • anatase, flexible substrate, nanotube, optical grating, perovskite solar cell, titanium dioxide

Citation Format(s)

Enhanced Self-Assembly of Crystalline, Large-Area, and Periodicity-Tunable TiO2 Nanotube Arrays on Various Substrates. / Liang, Xiaoguang; Zhang, Heng; Li, Ho-Wa et al.
In: ACS Applied Materials & Interfaces, Vol. 9, No. 7, 22.02.2017, p. 6265-6272.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review