Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations

Author(s)

  • Wing-Kei Ho

Detail(s)

Original languageEnglish
Pages (from-to)2369–2380
Number of pages12
Journal / PublicationRare Metals
Volume40
Issue number9
Online published24 Apr 2021
Publication statusPublished - Sep 2021

Abstract

Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO2 hollow spheres were prepared through a simple template method followed by calcination at different temperatures for the tetracycline (TC) degradation under simulated solar light illumination. With a calcination temperature ranging from 400 to 800 °C, the as-prepared CeO2 hollow structure annealed at 600 °C (C600) exhibited the best degradation performance with a degradation rate constant of 0.066 min−1, which was about six and five times higher than those of the uncalcined sample (C0) and the sample calcined at 800 °C (C800), respectively. Moreover, sample C600 was also superior to the CeO2 solid particle photocatalyst. The characterisation results showed that the improved photocatalytic performance was mainly ascribed to the synergistic effect of large specific surface areas, high crystallisation and excellent light scattering ability. Furthermore, the results of active species trapping experiments demonstrated that the superoxide anion (O2) radical and hole (h+) played dominant roles in TC degradation. Subsequently, the possible TC degradation pathways and photocatalytic mechanism of CeO2 hollow spheres were proposed on the basis of high-performance liquid chromatography–mass spectrometry analysis, main active species and band edge positions of CeO2. The results of this study provide a basis for designing and exploring hollow structure catalysts for energy conversion and environmental remediation.

Research Area(s)

  • CeO2 hollow spheres, Mechanism, Photocatalytic degradation, Reaction pathway, Tetracycline

Citation Format(s)

Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. / Wang, Dan; Yin, Fang-Xin; Cheng, Bei; Xia, Yang; Yu, Jia-Guo; Ho, Wing-Kei.

In: Rare Metals, Vol. 40, No. 9, 09.2021, p. 2369–2380.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review