Engineered barriers regulate osteoblast cell migration in vertical direction

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

4 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number4459
Journal / PublicationScientific Reports
Volume12
Online published15 Mar 2022
Publication statusPublished - 2022

Link(s)

Abstract

Considering cell migration is essential for understanding physiological processes and diseases. The vertical migration of cells in three dimensions is vital, but most previous studies on cell migration have only focused on two-dimensional horizontal migration. In this paper, cell migration in the vertical direction was studied. Barriers with a height of 1, 5, 10, and 25 mu m with grating and arrows in channels as guiding patterns were fabricated. The effects of barrier height and guiding patterns on the vertical migration of MC3T3 cells were explored. The study revealed that taller barriers hinder vertical migration of MC3T3 cells, whereas grating and arrows in channels promote it. The time-lapse and micrograph images showed that as the barrier height increased, the cell climbing angle along the barrier sidewall decreased, and the time taken to climb over the barrier increased. These results indicate that taller barriers increase the difficulty of vertical migration by MC3T3 cells. To promote the vertical migration of MC3T3 cells, 10 μm tall barriers with 18° and 40° sloped sidewalls were fabricated. For barriers with 18° sloped sidewalls, the probability for MC3T3 cells to climb up and down the 10 μm tall barriers was 40.6% and 20.3%, respectively; this is much higher than the migration probability over vertical barriers. This study shows topographic guidance on the vertical migration of MC3T3 cells and broadens the understanding of cell migration in the vertical direction.

Research Area(s)

  • ADHESION, MATRIX

Download Statistics

No data available