Energy-efficient window retrofit for high-rise residential buildings in different climatic zones of China
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Article number | 6473 |
Journal / Publication | Sustainability (Switzerland) |
Volume | 11 |
Issue number | 22 |
Online published | 17 Nov 2019 |
Publication status | Published - Nov 2019 |
Externally published | Yes |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85075894980&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(5d7992fe-9596-4e8e-a878-7bfd390204af).html |
Abstract
The building envelope plays a significant role in the energy performance of buildings and windows are a key element in transmitting heating and cooling between the indoor and outdoor environment, and hence an adequate window system is one of the most important retrofit strategies of existing buildings for energy conservation. Therefore, this study presents a method with a theoretical case study to examine the improvement of energy efficiency in a typical high-rise residential building through window retrofitting. A building energy design model in Designbuilder along with a building information modeling (BIM) model in Revit are developed, with 20 common potential glazing alternatives being analyzed to predict the potential energy savings in the same case building with identical orientation located in a variety of climate zones in China. Based on different parameters and considerations, the results demonstrated that the currently relatively expensive low-e window glazing has the best energy performance in all climate zones, but is sufficiently close to conventionally glazed windows in its energy efficiency to discourage its adoption at present, and that, instead, a single dark conventional glazed window is preferred in a hot summer/warm winter climate, double dark traditional glazing in a hot summer/cold winter climate, and a double clear conventional window in a cold climate. Based on the simulated results, an indicative suggestion was provided to select an adequate window system for residential building retrofitting in the studied climates or similar climatic regions.
Research Area(s)
- Climate zones, Energy saving, Energy simulation, High-rise residential building, Window retrofit
Citation Format(s)
Energy-efficient window retrofit for high-rise residential buildings in different climatic zones of China. / He, Qiong; Ng, S. Thomas; Hossain, Md. Uzzal et al.
In: Sustainability (Switzerland), Vol. 11, No. 22, 6473, 11.2019.
In: Sustainability (Switzerland), Vol. 11, No. 22, 6473, 11.2019.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available