Energy efficient perching and takeoff of a miniature rotorcraft

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

11 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Article number38
Journal / PublicationCommunications Engineering
Volume2
Online published13 Jun 2023
Publication statusPublished - 2023

Link(s)

Abstract

The flight time of aircraft rapidly decreases with smaller scales because the lift-to-drag ratio decreases when scaling down. Aerial-surface locomotion, or perching is one energy efficient solution to prolong the fight time by maintaining the drone at a high vantage point. Current perching strategies require additional components to ensure robots firmly attach to the surfaces, and able to detach afterwards, resulting in increased power consumption owing to the added weight. Here, we report a 32-g rotorcraft with the ability to repeatedly perch and take off from overhangs and walls on different wet and dry substances. A propelling thrust is used to support the robot to keep rotorcraft balance against the surface. Integrating with the mussel-inspired wet adhesives, the rotorcraft dispenses the additional components required for attachment and taking off. The final rotorcraft is 32.15 g, only 1.09 g heavier than the original prototype, but shows a 50% and 85% reduction in power consumption when perching on ceilings and walls respectively. The saved power leads to a fourfold increase in the total mission time.

© The Author(s) 2023

Research Area(s)

Download Statistics

No data available