Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices : Enhanced Stability and Polarization

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

398 Scopus Citations
View graph of relations


  • Shilpa N. Raja
  • Yehonadav Bekenstein
  • Matthew A. Koc
  • Stefan Fischer
  • Dandan Zhang
  • Liwei Lin
  • Peidong Yang
  • A. Paul Alivisatos


Original languageEnglish
Pages (from-to)35523-35533
Journal / PublicationACS Applied Materials and Interfaces
Issue number51
Online published19 Dec 2016
Publication statusPublished - 28 Dec 2016
Externally publishedYes


Lead halide perovskites hold promise for photonic devices, due to their superior optoelectronic properties. However, their use is limited by poor stability and toxicity. We demonstrate enhanced water and light stability of high-surface-area colloidal perovskite nanocrystals by encapsulation of colloidal CsPbBr3 quantum dots into matched hydrophobic macroscale polymeric matrices. This is achieved by mixing the quantum dots with presynthesized high-molecular-weight polymers. We monitor the photoluminescence quantum yield of the perovskite-polymer nanocomposite films under water-soaking for the first time, finding no change even after >4 months of continuous immersion in water. Furthermore, photostability is greatly enhanced in the macroscale polymer-encapsulated nanocrystal perovskites, which sustain >1010 absorption events per quantum dot prior to photodegradation, a significant threshold for potential device use. Control of the quantum dot shape in these thin-film polymer composite enables color tunability via strong quantum-confinement in nanoplates and significant room temperature polarized emission from perovskite nanowires. Not only does the high-molecular-weight polymer protect the perovskites from the environment but also no escaped lead was detected in water that was in contact with the encapsulated perovskites for months. Our ligand-passivated perovskite-macroscale polymer composites provide a robust platform for diverse photonic applications.

Research Area(s)

  • hydrophobic polymer, light and water stability, nanocomposite polarization, nanowires and nanoplates, perovskite quantum dot nanocrystals, photon budget

Citation Format(s)

Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. / Raja, Shilpa N.; Bekenstein, Yehonadav; Koc, Matthew A. et al.
In: ACS Applied Materials and Interfaces, Vol. 8, No. 51, 28.12.2016, p. 35523-35533.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review