Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

50 Scopus Citations
View graph of relations

Author(s)

  • Rui Kai Miao
  • Yi Xu
  • Adnan Ozden
  • Anthony Robb
  • Colin P. O'Brien
  • Christine M. Gabardo
  • Geonhui Lee
  • Jonathan P. Edwards
  • Jianan Erick Huang
  • Mengyang Fan
  • Shijie Liu
  • Yu Yan
  • Edward H. Sargent
  • David Sinton

Detail(s)

Original languageEnglish
Pages (from-to)2742-2753
Journal / PublicationJoule
Volume5
Issue number10
Online published21 Sept 2021
Publication statusPublished - 20 Oct 2021
Externally publishedYes

Abstract

Electrochemical reduction of carbon dioxide (CO2RR) converts intermittent renewable energy into high energy density fuels, such as ethanol. Membrane electrode assembly (MEA) electrolyzers are particularly well-suited for CO2-to-ethanol conversion in view of their low ohmic resistance and high stability. However, over 75% of the ethanol produced at the cathode migrates through the membrane where it is diluted by the anolyte and may be oxidized. The ethanol concentration that results is two orders of magnitude below the 10 wt % standard set by the incumbent industrial process, fermentation. Here, we reverse the direction of ion and electroosmotic transport by means of a porous proton exchange layer, thereby blocking both the convective and diffusive routes of ethanol loss. With this strategy, we eliminate ethanol crossover to the anode (< 1%) and achieve an ethanol concentration of 13.1 wt % directly from the cathode outlet.

Research Area(s)

  • carbon utilization, catalysis, CO2 electroreduction, concentration, downstream separation, electrolyzer, ethanol, liquid crossover, membrane electrode assembly, polymer electrolyte

Citation Format(s)

Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. / Miao, Rui Kai; Xu, Yi; Ozden, Adnan et al.
In: Joule, Vol. 5, No. 10, 20.10.2021, p. 2742-2753.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review