Elasticity M-tensors and the strong ellipticity condition

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

1 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number124982
Journal / PublicationApplied Mathematics and Computation
Volume373
Online published14 Jan 2020
Publication statusPublished - 15 May 2020

Abstract

In this paper, we establish two sufficient conditions for the strong ellipticity of any fourth-order elasticity tensor and investigate a class of tensors satisfying the strong ellipticity condition, the elasticity M-tensor. The first sufficient condition is that the strong ellipticity holds if the unfolding matrix of this fourth-order elasticity tensor can be modified into a positive definite one by preserving the summations of some corresponding entries. Second, an alternating projection algorithm is proposed to verify whether an elasticity tensor satisfies the first condition or not. Besides, the elasticity M-tensor is defined with respect to the M-eigenvalues of elasticity tensors. We prove that any nonsingular elasticity M-tensor satisfies the strong ellipticity condition by employing a Perron-Frobenius-type theorem for M-spectral radii of nonnegative elasticity tensors. Other equivalent definitions of nonsingular elasticity M-tensors are also established.

Research Area(s)

  • Alternating projection, Elasticity tensor, M-positive definite, M-tensor, Nonnegative tensor, S-positive definite, Strong ellipticity