Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a High-Capacity Manganese Oxide Cathode

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

15 Scopus Citations
View graph of relations

Author(s)

  • Weiyuan Huang
  • Luyi Yang
  • Zhefeng Chen
  • Tongchao Liu
  • Guoxi Ren
  • Peizhao Shan
  • Bin-Wei Zhang
  • Shiming Chen
  • Shunning Li
  • Jianyuan Li
  • Cong Lin
  • Wenguang Zhao
  • Jimin Qiu
  • Jianjun Fang
  • Mingjian Zhang
  • Cheng Dong
  • Fan Li
  • Yong Yang
  • Cheng-Jun Sun
  • Qingzhen Huang
  • Guangjin Hou
  • Shi-Xue Dou
  • Jun Lu
  • Khalil Amine
  • Feng Pan

Detail(s)

Original languageEnglish
Article number2202745
Journal / PublicationAdvanced Materials
Volume34
Issue number30
Online published3 Jun 2022
Publication statusPublished - Jul 2022
Externally publishedYes

Abstract

The key to breaking through the capacity limitation imposed by intercalation chemistry lies in the ability to harness more active sites that can reversibly accommodate more ions (e.g., Li+) and electrons within a finite space. However, excessive Li-ion insertion into the Li layer of layered cathodes results in fast performance decay due to the huge lattice change and irreversible phase transformation. In this study, an ultrahigh reversible capacity is demonstrated by a layered oxide cathode purely based on manganese. Through a wealth of characterizations, it is clarified that the presence of low-content Li2MnO3 domains not only reduces the amount of irreversible O loss; but also regulates Mn migration in LiMnO2 domains, enabling elastic lattice with high reversibility for tetrahedral sites Li-ion storage in Li layers. This work utilizes bulk cation disorder to create stable Li-ion-storage tetrahedral sites and an elastic lattice for layered materials, with a reversible capacity of 600 mA h g−1, demonstrated in th range 0.6–4.9 V versus Li/Li+ at 10 mA g−1. Admittedly, discharging to 0.6 V might be too low for practical use, but this exploration is still of great importance as it conceptually demonstrates the limit of Li-ions insertion into layered oxide materials.

Research Area(s)

  • elastic lattices, layered oxide cathodes, Li-ion batteries, reversible tetrahedral sites, ultrahigh capacity

Citation Format(s)

Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a High-Capacity Manganese Oxide Cathode. / Huang, Weiyuan; Yang, Luyi; Chen, Zhefeng et al.
In: Advanced Materials, Vol. 34, No. 30, 2202745, 07.2022.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review