Efficient and stable one-micrometre-thick organic light-emitting diodes

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

30 Scopus Citations
View graph of relations

Author(s)

  • Guanhao Liu
  • Zhiyi Li
  • Xiaoxiao Hu
  • Yuanyuan Qin
  • Dongqi Chen
  • Lingxue Wang
  • Jianjun Liu
  • Pengfei Wang
  • Yong-Jin Pu
  • Ying Wang

Detail(s)

Original languageEnglish
Pages (from-to)876–883
Journal / PublicationNature Photonics
Volume16
Issue number12
Online published24 Oct 2022
Publication statusPublished - Dec 2022

Abstract

Organic light-emitting diodes (OLEDs) with thick carrier transport layers are desirable for high production yields of OLED-based displays and lighting; however, high operating voltages are inevitably introduced to thick OLEDs due to the low carrier mobilities of organics. The associated Joule heating will also induce structural defects and lower operational stabilities. Here we demonstrate highly efficient and stable OLEDs with thicknesses of over 1 μm and low operating voltages. The OLEDs use MoO3/SimCP2 as a hole-injection layer and a thick layer of 4,4′-(cyclohexane-1,1-diyl)bis(N,N-di-p-tolylaniline) (TAPC) as a hole-transporting layer. We find that Ohmic hole injection can only be formed for TAPC layers with thicknesses of over 900 nm. In this configuration, we achieve external quantum efficiencies of 23.09%, 22.19% and 7.39%, and operating voltages of 5.11 V, 3.55 V and 6.88 V at 1,000 cd cm–2 for red, green and blue OLEDs, respectively. We also incorporate a thin layer of HAT-CN between the TAPC and electron-blocking layers to suppress electron leakage. The red, green and blue OLEDs in this work maintained the above-mentioned performances while also featuring excellent extrapolated LT95 operational lifetimes of around 55,000 h, 18,000 h and 1,600 h, respectively, at an initial luminance of 1,000 cd cm2. We believe that our work paves the way for large-area OLED-based displays and lighting with high production yields.

Citation Format(s)

Efficient and stable one-micrometre-thick organic light-emitting diodes. / Liu, Guanhao; Li, Zhiyi; Hu, Xiaoxiao et al.
In: Nature Photonics, Vol. 16, No. 12, 12.2022, p. 876–883.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review