Effects of loading rate on the deformation and cracking of dental multilayers : Experiments and models

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)970-975
Journal / PublicationJournal of Materials Research
Volume21
Issue number4
Publication statusPublished - Apr 2006
Externally publishedYes

Abstract

The paper presents the results of combined experimental, analytical, and computational studies of contact-induced deformation and cracking in dental multilayers. These include studies of individual layers and composite structures that consist of tri-layers of glass bonded to ceramic-filled polymer foundation with an acrylate-based join material. Loading-rate-dependent Young's moduli of the join and foundation materials were obtained from monotonic compression tests. Critical loads were also determined for the tri-layers from Hertzian contact tests at different loading rates. The fracture onset (sub-surface radial cracking) was detected using an in situ telescope. The measured rate-dependent Young's moduli were then incorporated into a finite element model that was used to predict the rate-dependent critical loads in the tri-layer system. Finally, the paper shows that the observed loading rate-dependence of the critical load (for radial cracking) is due to the combined effects of slow crack growth in glass and rate-dependent Young's moduli in the join and foundation layers. © 2006 Materials Research Society.