Effect of Zr addition on microstructure and mechanical properties of CoCrFeNiZrx high-entropy alloy thin films

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

View graph of relations

Detail(s)

Original languageEnglish
Journal / PublicationApplied Nanoscience (Switzerland)
Early online date27 May 2019
Publication statusE-pub ahead of print - 27 May 2019

Abstract

As the technology of microscale devices evolves to smaller dimensions, the newly surged high-entropy alloys (HEAs), in particular high entropy alloy thin films (HEAFs), manifest excellent properties for practical applications. However, limitedstudies to date focused on microstructures and their impact on mechanical properties of HEAFs. In this work, we systematically investigated the relationship between microstructure and mechanical properties of CoCrFeNiZrx (x = 0, 0.3, 0.5, 1) high-entropy alloy thin films. A transition from single-phase crystal to amorphous structure was observed with increasing Zr concentration from 0 to 20.7 at.%. In the intermediate Zr concentration ranging from 7.0 to 12.9 at.%, Zr addition rendersa crystal–amorphous dual-phase structure with Zr element segregation and a peak hardness of 6.7 GPa. These findings notonly provide deep insight into understanding alloying effects on microstructure evolution and mechanical properties of HEAFs, but also present valuable information for designing ultrastrong high-entropy alloys for practical applications, such as microelectronic devices, lightweight lattices and advanced coating industry.

Research Area(s)

  • High-entropy alloys, Sputtering, Thin films, Microstructure, Hardness, Deformation mechanism

Citation Format(s)