Effect of solder filler thickness on the mechanical stability of fiber-solder-ferrule joint under temperature cyclic loading

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations


Related Research Unit(s)


Original languageEnglish
Pages (from-to)325-333
Journal / PublicationJournal of Materials Science: Materials in Electronics
Issue number4
Publication statusPublished - Apr 2006


The base materials of package and ferrule are often gold-coated Kovar and Invar, they both have relatively low coefficient of thermal expansion (CTE). Solder 63Sn37Pb dissolves Au substantially and forms brittle AuSn4, which may cause catastrophic failure in the fiber-solder-ferrule (FSF) joint in the long-term application. It is well known that thermal fatigue creep is one of the crucial factors affecting the life and reliability of a solder joint in electronic and optoelectronic assemblies. Therefore, it is important to understand the behavior of the FSF joint under thermal cyclic loading. In this study, four different thicknesses of solder filler in a FSF joint were examined. By using the finite element method (FEM), the equivalent creep strains of eutectic lead-tin solder were compared. The joints were subjected to 5 cycles of temperature cycling test, i.e., -65 to 150°C. It was found that the thicker solder filler is subjected to a larger equivalent creep strain than the thinner solder filler. It is discussed the vertical shift of the optical fiber, which is sensitive to temperature and has effects on the power loss coupling. Modeling and experimental results show that 0.5 mm is the best inner diameter of ferrule that provides the lowest displacement and, thus, the lowest power loss under temperature cycle. © Springer Science + Business Media, LLC 2006.

Citation Format(s)