Effect of Load Eccentricity on the Mechanical Response of FRP-Confined Predamaged Concrete under Compression

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

14 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Article number04020057
Journal / PublicationJournal of Composites for Construction
Volume24
Issue number5
Online published7 Aug 2020
Publication statusPublished - Oct 2020

Abstract

Fiber-reinforced polymer (FRP) confinement is an effective way of enhancing the mechanical properties of concrete. However, currently, a model that can predict the mechanical response of eccentrically loaded FRP-confined predamaged concrete has not been satisfactorily established. This may be primarily due to the complications and nature of the problem. An experimental and analytical investigation hitherto unavailable is undertaken to examine the mechanical response of eccentrically loaded FRP-confined predamaged concrete specimens. This analytical study intends to examine and identify the key parameters that affect the mechanical response of eccentrically loaded FRP-confined predamaged concrete. Eccentric compression tests were performed on 72 short concrete cylinders with wide variation of degree of damage and load eccentricity, but with the same FRP confinement stiffness. A new model for the stress–strain relationship of FRP-confined predamaged concrete with eccentric loading is developed. The new model thus established is capable of predicting the mechanical response of the eccentrically loaded FRP-confined predamaged concrete specimens with good accuracy.

Research Area(s)

  • Concrete, Confinement, Damage degree, Eccentricity, Repairing, Stress-strain model