Effect of design configurations on water flow window performance

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

23 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)354-362
Journal / PublicationSolar Energy
Online published26 Jun 2017
Publication statusPublished - Oct 2017


Water flow window has very good application potential in zero carbon buildings of the warm climate. In this study, the effects of water-flow window configurations were investigated, such as the water layer thickness and glazing height-to-width ratio (GHTWR). The effects of distribution header design on the
thermal and flow characteristics were also analyzed. Its long-term dynamic thermal performance was examined through a self-developed simulation program, of which the FORTRAN code was previously validated through comparison with experimental data. In the current study, the one-dimensional thermal simulation modelling approach was further justified through CFD analysis. Then the overall thermal performance of the window system was evaluated from the aspects of useful water heat gain and the impact on space air-conditioning power consumptions. A water layer of thickness around 15–20 mm and a GHTWR of 0.4 were found desirable for the tested cases. While the size and distribution of the header openings would affect the localized water flow and temperature distribution, their effect on the laminar upward flow and the final temperature rise is not significant.

Research Area(s)

  • Cavity thickness, Header design, Height to width ratio, Water flow window