Effect of acetic acid concentration on optical properties of lead acetate based methylammonium lead iodide perovskite thin film

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

7 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number110456
Journal / PublicationOptical Materials
Volume109
Online published25 Sep 2020
Publication statusPublished - Nov 2020

Abstract

High absorption of perovskite thin films is crucial for efficient metal halide perovskite solar cells. In this study, methylammonium lead iodide (CH3NH3PbI3) perovskite thin films are prepared using lead (II) acetate Pb(Ac)2, acetic acid (HAc) and CH3NH3I through solution method. The effect of HAc volume (0 ml–100 ml at step size of 25 ml HAc) on optical properties and parameters of the CH3NH3PbI3 perovskite thin films developed are investigated using UV–Vis spectrophotometry and mathematical correlations. Interestingly, the increase of HAc amount to 75 ml leads to an increase in absorbance, refractive index, extinction co-efficient, dielectric properties and optical conductivity and a decrease in transmittance and optical band gaps of the CH3NH3PbI3 perovskite thin films. The optimized film is obtained at 75 ml HAc at which refractive index, film thickness and optical band gap is 1.45 at 485 nm, 355 nm and 1.47 eV, respectively. The enhanced absorption of the optimized thin film is attributable to an increase in structure ordering at HAc amount equals 75 ml. The fabricated CH3NH3PbI3 perovskite thin films have potential as ideal antireflection coatings for solar cells and optoelectronic applications.

Research Area(s)

  • Tauc's plot, Dielectric constants, Extinction coefficient, Refractive index, Photoconductivity, two-step spin-coating method

Citation Format(s)

Effect of acetic acid concentration on optical properties of lead acetate based methylammonium lead iodide perovskite thin film. / Uyanga, Kindness Alfred; Ezike, Sabastine; Onyedika, Amadi T.; Kareem, Abdulazeez B.; Chiroma, Timothy M.

In: Optical Materials, Vol. 109, 110456, 11.2020.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review