Edge-to-Cloud IIoT for Condition Monitoring in Manufacturing Systems with Ubiquitous Smart Sensors

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

12 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number5901
Journal / PublicationSensors
Volume22
Issue number15
Online published7 Aug 2022
Publication statusPublished - Aug 2022

Link(s)

Abstract

The Industrial Internet of Things (IIoT) connects industrial assets to ubiquitous smart sensors and actuators to enhance manufacturing and industrial processes. Data-driven condition monitoring is an essential technology for intelligent manufacturing systems to identify anomalies from malfunctioning equipment, prevent unplanned downtime, and reduce the operation costs by predictive maintenance without interrupting normal machine operations. However, data-driven condition monitoring requires massive data collected from smart sensors to be transmitted to the cloud for further processing, thereby contributing to network congestion and affecting the network performance. Furthermore, unbalanced training data with very few labelled anomalies limit supervised learning models because of the lack of sufficient fault data for the training process in anomaly detection algorithms. To address these issues, we proposed an IIoT-based condition monitoring system with an edge-to-cloud architecture and computed the relative wavelet energy as feature vectors on the edge layer to reduce the network traffic overhead. We also proposed an unsupervised deep long short-term memory (LSTM) network module for anomaly detection. We implemented the proposed IIoT condition monitoring system for a manufacturing machine in a real shop site to evaluate our proposed solution. Our experimental results verify the effectiveness of our approach which can not only reduce the network traffic overhead for the IIoT but also detect anomalies accurately.

Research Area(s)

  • Industrial IoT, condition monitoring, anomaly detection, unsupervised learning approach, relative wavelet energy, LSTM, WAVELET TRANSFORM

Download Statistics

No data available