Dynamic pricing and inventory management with demand learning : A bayesian approach
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 105078 |
Journal / Publication | Computers and Operations Research |
Volume | 124 |
Online published | 18 Aug 2020 |
Publication status | Published - Dec 2020 |
Link(s)
Abstract
We consider a retail firm selling a durable product in a volatile market where the demand is price-sensitive and random but its distribution is unknown. The firm dynamically replenishes inventory and adjusts prices over time and learns about the demand distribution. Assuming that the demand model is of the multiplicative form and unmet demand is partially backlogged, we take the empirical Bayesian approach to formulate the problem as a stochastic dynamic program. We first identify a set of regularity conditions on demand models and show that the state-dependent base-stock list-price policy is optimal. We next employ the dimensionality reduction approach to separate the scale factor that captures observed demand information from the optimal profit function, which yields a normalized dynamic program that is more tractable. We also analyze the effect of demand learning on the optimal policy using the system without Bayesian update as a benchmark. We further extend our analysis to the case with unobserved lost sales and the case with additive demand.
Research Area(s)
- Bayesian dynamic program, Demand learning, Dynamic pricing, Inventory management
Citation Format(s)
Dynamic pricing and inventory management with demand learning: A bayesian approach. / Liu, Jue; Pang, Zhan; Qi, Linggang.
In: Computers and Operations Research, Vol. 124, 105078, 12.2020.
In: Computers and Operations Research, Vol. 124, 105078, 12.2020.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review