Dynamic Depth-Aware Network for Endoscopy Super-Resolution

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Number of pages12
Journal / PublicationIEEE Journal of Biomedical and Health Informatics
Publication statusOnline published - 6 Jul 2022

Abstract

Endoscopy super-resolution (SR) plays an important role in improving diagnostic results and reducing the misdiagnosis rate. Even though recent studies have investigated the SR for endoscopy, these methods apply equal importance to the whole image and do not consider the relationship among pixels, especially the depth information, which can provide diagnosis-related information for clinicians. To address this problem, we propose a dynamic depth-aware network for endoscopy super-resolution, which represents the first effort to comprehensively integrate the depth information to the SR task for endoscopic images. It includes a depth-wise feature extracting branch (DW-B) and a depth-guided SR branch (DGSR-B). The DW-B aims to extract the representative feature for each depth level (i.e. depth matrix) further to provide auxiliary information and guide the super-resolution of texture under different depth levels. In DGSR-B, a depth-guided block (DGB) consisting of depth-focus normalization (DFN) is introduced to inject both the depth matrix and depth map into the LR image feature, so as to guide the image generation for each depth region. To adaptively super-resolve the regions under different depth levels, we devise a dynamic depth-aware loss to assign different trainable weights to each region for SR optimization. Extensive experiments have been conducted on two main publicly available datasets, i.e., the Kvasir dataset and the EndoScene dataset, and the superior performance verifies the effectiveness of our method for SR task and polyp segmentation. Source code is to be released. 

Research Area(s)

  • Cancer, Deep learning, depth information, Endoscopes, Endoscopy, Feature extraction, polyp segmentation, super-resolution, Superresolution, Task analysis, Three-dimensional displays