Dynamic contrast-enhanced CEST MRI using a low molecular weight dextran
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | e4649 |
Journal / Publication | NMR in Biomedicine |
Volume | 35 |
Issue number | 3 |
Online published | 15 Nov 2021 |
Publication status | Published - Mar 2022 |
Link(s)
DOI | DOI |
---|---|
Document Link | |
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85119377042&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(cbe07c21-3891-4968-a39b-eb88d4459489).html |
Abstract
Natural and synthetic sugars have great potential for developing highly biocompatible and translatable chemical exchange saturation transfer (CEST) MRI contrast agents. In this study, we aimed to develop the smallest clinically available form of dextran, Dex1 (molecular weight, MW ~ 1 kDa), as a new CEST agent. We first characterized the CEST properties of Dex1 in vitro at 11.7 T and showed that the Dex1 had a detectable CEST signal at ~1.2 ppm, attributed to hydroxyl protons. In vivo CEST MRI studies were then carried out on C57BL6 mice bearing orthotopic GL261 brain tumors (n = 5) using a Bruker BioSpec 11.7 T MRI scanner. Both steady-state full Z-spectral images and single offset (1.2 ppm) dynamic dextran-enhanced (DDE) images were acquired before and after the intravenous injection of Dex1 (2 g/kg). The steady-state Z-spectral analysis showed a significantly higher CEST contrast enhancement in the tumor than in contralateral brain (∆MTRasym1.2 ppm = 0.010 ± 0.006 versus 0.002 ± 0.008, P = 0.0069) at 20 min after the injection of Dex1. Pharmacokinetic analyses of DDE were performed using the area under the curve (AUC) in the first 10 min after Dex1 injection, revealing a significantly higher uptake of Dex1 in the tumor than in brain tissue for tumor-bearing mice (AUC[0-10 min] = 21.9 ± 4.2 versus 5.3 ± 6.4%·min, P = 0.0294). In contrast, no Dex1 uptake was foundling in the brains of non-tumor-bearing mice (AUC[0-10 min] = −1.59 ± 2.43%·min). Importantly, the CEST MRI findings were consistent with the measurements obtained using DCE MRI and fluorescence microscopy, demonstrating the potential of Dex1 as a highly translatable CEST MRI contrast agent for assessing tumor hemodynamics.
Research Area(s)
- brain tumor, CEST, dextran, MRI, permeability
Citation Format(s)
Dynamic contrast-enhanced CEST MRI using a low molecular weight dextran. / Han, Zheng; Chen, Chuheng; Xu, Xiang et al.
In: NMR in Biomedicine, Vol. 35, No. 3, e4649, 03.2022.
In: NMR in Biomedicine, Vol. 35, No. 3, e4649, 03.2022.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review