Dual partitioning multicasting for high-performance on-chip networks

Jianhua Li, Liang Shi, Chun Jason Xue, Yinlong Xu

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Citations (Scopus)

Abstract

As the number of cores integrated onto a single chip increases, power dissipation and network latency become ever-increasingly stringent. On-chip network provides an efficient and scalable interconnection paradigm for chip multiprocessors (CMPs), wherein one-to-many (multicast) communication is universal for such platforms. Without efficient multicasting support, traditional unicasting on-chip networks will be low efficiency in tackling such multicast communication. In this paper, we propose Dual Partitioning Multicasting (DPM) to reduce packet latency and balance network resource utilization. Specifically, DPM scheme adaptively makes routing decisions based on the network load-balance level as well as the link sharing patterns characterized by the distribution of the multicasting destinations. Extensive experimental results for synthetic traffic as well as real applications show that compared with the recently proposed RPM scheme, DPM significantly reduces the average packet latency and mitigates the network power consumption. More importantly, DPM is highly scalable for future on-chip networks with heavy traffic load and varieties of traffic patterns. © 2013 Elsevier Inc. All rights reserved.
Original languageEnglish
Pages (from-to)1858-1871
JournalJournal of Parallel and Distributed Computing
Volume74
Issue number1
DOIs
Publication statusPublished - Jan 2014

Research Keywords

  • Latency-aware
  • Load-balance
  • Multicast routing
  • On-chip network
  • Rectilinear Steiner tree

Fingerprint

Dive into the research topics of 'Dual partitioning multicasting for high-performance on-chip networks'. Together they form a unique fingerprint.

Cite this