Domain decomposition for the Navier-Stokes equations in complex geometries
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 431-432 |
Journal / Publication | ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
Volume | 76 |
Issue number | SUPPL. 5 |
Publication status | Published - 1996 |
Externally published | Yes |
Link(s)
Abstract
The proposed algorithm is based on the fourth-order compact discretization schemes for the Navier-Stokes equations in streamfunction-vorticity-pressure formulation. The equations are expressed in terms of a general orthogonal curvilinear coordinate system. The Domain Decomposition (Chimera) Method allows for full parallelization and for modeling of non-standard geometries.
Bibliographic Note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.
Citation Format(s)
Domain decomposition for the Navier-Stokes equations in complex geometries. / Rokicki, J.; Floryan, J. M.; Nowakowski, A.
In: ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 76, No. SUPPL. 5, 1996, p. 431-432.
In: ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 76, No. SUPPL. 5, 1996, p. 431-432.
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review