Distribution and spread of the mobilised RND efflux pump gene cluster tmexCD-toprJ in clinical Gram-negative bacteria : a molecular epidemiological study
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | e846-e856 |
Journal / Publication | The Lancet Microbe |
Volume | 3 |
Issue number | 11 |
Online published | 3 Oct 2022 |
Publication status | Published - Nov 2022 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85142420237&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(c6c77184-60d7-45c5-a6ec-d6598b22808a).html |
Abstract
Background TMexCD1-TOprJ1, which is associated with phenotypic resistance to multiple classes of antibiotics, is a transmissible resistance-nodulation-division (RND) family efflux pump. However, the prevalence and genomic and phenotypic characteristics of clinical isolates with this important resistance determinant are poorly understood. In this study, we aimed to survey tmexCD-toprJ among clinical Gram-negative isolates collected from hospitals in China between 1991 and 2020 and characterise tmexCD-toprJ-positive clinical isolates.
Methods We conducted online data retrieval and active nationwide surveillance in China to screen tmexCD-toprJ-positive strains. We characterised tmexCD-toprJ-positive clinical strains for their antimicrobial susceptibility, genetic and functional characteristics, and the potential inter-species transmission route of tmexCD-toprJ with whole genome sequencing and bioinformatics analyses. The function of tmexCD-toprJ in Pseudomonas sp and Proteus sp was investigated by tmexD gene knockdown using an isopropylthio-β-galactoside-inducible CRISPR interference system.
Findings Data retrieval obtained 53 strains carrying tmexCD-toprJ, comprising 32 Pseudomonas spp, 11 Klebsiella pneumoniae, one Aeromonas spp, one Citrobacter freundii, and one uncultured bacterium from diverse niches. 48 (0·64%) of 7517 clinical isolates from China, including seven Klebsiella spp, one Proteus mirabilis, and 40 Pseudomonas spp, carried tmexCD-toprJ. These isolates exhibited multidrug resistance phenotypes and co-harboured resistance genes, such as mcr and carbapenemases genes. tmexCD-toprJ was encoded on both plasmids and chromosomes in all Klebsiella spp that carried plasmid-borne tmexCD-toprJ (n=7), P mirabilis carried chromosome-borne tmexCD-toprJ, and Pseudomonas spp carried either plasmid-borne (n=19) or chromosome-borne (n=21) ones. tmexCD-toprJ had undergone clonal and horizontal transmission among clinical pathogens. Eight different types of genetic context of tmexCD-toprJ were identified, each of which was associated with different mobile elements, including IntI, IS6100, TnAs1-like, ISRor5, ISVsa3, ISCfr-like, Tn5393, and IS222-like, which might facilitate its transmission. Knockdown of tmexD led to a four times decrease in tigecycline minimum inhibitory concentrations in both Pseudomonas spp and Proteus spp.
Interpretation Our study provides evidence to suggest that tmexCD-toprJ contributes to the antimicrobial resistance phenotypes in different bacterial species. tmexCD-toprJ has disseminated among diverse species of clinical pathogens, which warrants timely monitoring in clinical pathogens.
Research Area(s)
Bibliographic Note
Citation Format(s)
In: The Lancet Microbe, Vol. 3, No. 11, 11.2022, p. e846-e856.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review