Development of a multimodel-based seasonal prediction system for extreme droughts and floods : A case study for South Korea

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

24 Scopus Citations
View graph of relations


  • Soo-Jin Sohn
  • Chi-Yung Tam
  • Joong-Bae Ahn

Related Research Unit(s)


Original languageEnglish
Pages (from-to)793-805
Journal / PublicationInternational Journal of Climatology
Issue number4
Publication statusPublished - 30 Mar 2013


An experimental, district-level system was developed to forecast droughts and floods over South Korea to properly represent local precipitation extremes. The system is based on the Asia-Pacific Economic Cooperation (APEC) Climate Center (APCC) multimodel ensemble (MME) seasonal prediction products. Three-month lead precipitation forecasts for 60 stations in South Korea for the season of March to May are first obtained from the coarse-scale MME prediction using statistical downscaling. Owing to the relatively small variance of the MME and regression-based downscaling outputs, the downscaled MME (DMME) products need to be subsequently inflated. The final station-scale precipitation predictions are then used to produce drought and flood forecasts on the basis of the Standardized Precipitation Index (SPI). The performance of three different inflation schemes was also assessed. Of these three schemes, the method that simply rescales the variance of predicted rainfall to that based on climate records, irrespective of the prediction skill or the DMME variance itself at a particular station, gives the best overall improvement in the SPI predictions. However, systematic biases in the prediction system cannot be removed by variance inflation. This implies that DMME techniques must be further improved to correct the bias in extreme drought/flood predictions. Overall, it is seen that DMME, in conjunction with variance inflation, can predict hydrological extremes with reasonable skill. Our results could inform the development of a reliable early warning system for droughts and floods, which is invaluable to policy makers and stakeholders in agricultural and water management sectors, and so forth and is important for mitigation and adaptation measures. © 2012 Royal Meteorological Society.

Research Area(s)

  • Extreme droughts and floods, MME, Seasonal prediction, SPI, Statistical downscaling, Variance inflation