Development of a high-strength Fe–12Mn maraging steel via designing lath interfacial and intragranular nanostructures

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations

Author(s)

  • Mujin Yang
  • Chao Huang
  • Zhifu Yao
  • Zhijie Yang
  • Zhou Li
  • Cuiping Wang
  • Haichen Wu
  • Yilu Zhao
  • Shuai Wang
  • Xingjun Liu

Detail(s)

Original languageEnglish
Article number145280
Journal / PublicationMaterials Science & Engineering A
Volume886
Online published7 Jul 2023
Publication statusPublished - 17 Oct 2023

Abstract

A Heusler Fe2TiSi-phase strengthened 12Mn maraging steel Fe–12Mn–5Co–1Ti–1Mo–1Si was extensively studied using various experimental (EBSD, TEM and uniaxial tensile) techniques. The results indicate that the fine and dispersed Fe2TiSi particles, precipitating within the martensite, were the primary strengthening phase when aged at 450 °C regardless of whether the alloy is cold rolled or solid-solution treated. Furthermore, a soft reverted austenite nano-layer was observed at the lath interface, imparting significant toughness to the martensite matrix. By carefully optimizing the aging process parameters, the 12Mn alloy achieved a high tensile strength of ∼1700 MPa with a moderate elongation of ∼7% at break.
When aged at 400 °C, unexpected precipitation of α-Mn particles within the martensite structure was observed, displacing the Fe2TiSi phase as the dominant strengthening phase. Simultaneously, elemental Mn segregation was found to occur at the lath interface, instead of the formation of reverted austenite. This Mn segregation layer was identified as the main factor contributing to brittle fracture behavior. These findings illustrate that synergistic improvement of strength and plasticity can be realized via an optimal combination of precipitation strengthening and interfacial layer toughening mechanisms. © 2023 Published by Elsevier B.V.

Research Area(s)

  • Fe2TiSi heusler phase, Interfacial segregation, Maraging steel, Nano-austenite interfacial layer, Precipitation strengthening

Citation Format(s)

Development of a high-strength Fe–12Mn maraging steel via designing lath interfacial and intragranular nanostructures. / Yang, Mujin; Huang, Chao; Yao, Zhifu et al.
In: Materials Science & Engineering A, Vol. 886, 145280, 17.10.2023.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review