Designing succinct structural alphabets
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Journal / Publication | Bioinformatics |
Volume | 24 |
Issue number | 13 |
Publication status | Published - Jul 2008 |
Externally published | Yes |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-46249124995&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(7433e4cc-5bd1-4615-aca3-9a3ecd5fe065).html |
Abstract
Motivation: The 3D structure of a protein sequence can be assembled from the substructures corresponding to small segments of this sequence. For each small sequence segment, there are only a few more likely substructures. We call them the 'structural alphabet' for this segment. Classical approaches such as ROSETTA used sequence profile and secondary structure information, to predict structural fragments. In contrast, we utilize more structural information, such as solvent accessibility and contact capacity, for finding structural fragments. Results: Integer linear programming technique is applied to derive the best combination of these sequence and structural information items. This approach generates significantly more accurate and succinct structural alphabets with more than 50% improvement over the previous accuracies. With these novel structural alphabets, we are able to construct more accurate protein structures than the state-of-art ab initio protein structure prediction programs such as ROSETTA. We are also able to reduce the Kolodny's library size by a factor of 8, at the same accuracy. © 2008 The Author(s).
Research Area(s)
Citation Format(s)
Designing succinct structural alphabets. / Li, Shuai Cheng; Bu, Dongbo; Gao, Xin et al.
In: Bioinformatics, Vol. 24, No. 13, 07.2008.
In: Bioinformatics, Vol. 24, No. 13, 07.2008.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available