Design of an Effective Double-Rotor Machine With Robust Mechanical Structure

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

3 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Article number7503407
Journal / PublicationIEEE Transactions on Magnetics
Volume56
Issue number1
Online published20 Dec 2019
Publication statusPublished - Jan 2020

Abstract

The power split system is the key power transmission component in hybrid electric vehicles (HEVs). This article presents a new interior consequent-pole permanent-magnet (PM) magnetic-geared double rotor machine (ICPMDM) with a double rotor structure, which is suitable as the power split system for HEVs. Since the common existing magnetic-geared double-rotor machine (MGDBM) adopts the surface-mounted PMs on its rotor, it suffers from the problem that the PMs might fly away during high-speed situations. The key of the proposed machine is to insert the PMs with the same polarity into the rotor core, and the flux barrier is added to increase the main flux. So its mechanical structure is more robust, while the electromagnetic performance does not deterioriate. Then, the working principle is analyzed, and the structure is optimized. Additionally, the performances of the conventional machine and proposed type are quantitatively compared. The result shows that proposed machine has more advantages for the power split system in HEVs than the conventional machine.

Research Area(s)

  • Consequent pole, hybrid electric vehicle (HEV), interior permanent magnet (IPM), magnetic-geared effect