DENSEN : a convolutional neural network for estimating chronological ages from panoramic radiographs

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

12 Scopus Citations
View graph of relations

Author(s)

  • Xuedong Wang
  • Yanle Liu
  • Yin Chen
  • Xiao Cao
  • Yuchen Zhang
  • Qin Zhou

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number426
Journal / PublicationBMC Bioinformatics
Volume23
Issue numberSuppl 3
Online published14 Oct 2022
Publication statusPublished - 2022

Link(s)

Abstract

Background: Age estimation from panoramic radiographs is a fundamental task in forensic sciences. Previous age assessment studies mainly focused on juvenile rather than elderly populations (> 25 years old). Most proposed studies were statistical or scoring-based, requiring wet-lab experiments and professional skills, and suffering from low reliability.

Result: Based on Soft Stagewise Regression Network (SSR-Net), we developed DENSEN to estimate the chronological age for both juvenile and older adults, based on their orthopantomograms (OPTs, also known as orthopantomographs, pantomograms, or panoramic radiographs). We collected 1903 clinical panoramic radiographs of individuals between 3 and 85 years old to train and validate the model. We evaluated the model by the mean absolute error (MAE) between the estimated age and ground truth. For different age groups, 3–11 (children), 12–18 (teens), 19–25 (young adults), and 25+ (adults), DENSEN produced MAEs as 0.6885, 0.7615, 1.3502, and 2.8770, respectively. Our results imply that the model works in situations where genders are unknown. Moreover, DENSEN has lower errors for the adult group (> 25 years) than other methods. The proposed model is memory compact, consuming about 1.0 MB of memory overhead.

Conclusions: We introduced a novel deep learning approach DENSEN to estimate a subject’s age from a panoramic radiograph for the first time. Our approach required less laboratory work compared with existing methods. The package we developed is an open-source tool and applies to all different age groups.

Research Area(s)

  • Chronological age estimation, Forensic anthropology, Orthopantomogram, Soft Stagewise Regression Network

Bibliographic Note

Research Unit(s) information for this publication is provided by the author(s) concerned.

Citation Format(s)

DENSEN: a convolutional neural network for estimating chronological ages from panoramic radiographs. / Wang, Xuedong; Liu, Yanle; Miao, Xinyao et al.
In: BMC Bioinformatics, Vol. 23, No. Suppl 3, 426, 2022.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

Download Statistics

No data available