DEM investigations of failure mode of sands under oedometric loading

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number103599
Journal / PublicationAdvanced Powder Technology
Volume33
Issue number6
Online published5 May 2022
Publication statusPublished - Jun 2022

Abstract

It will be practically useful to explore the evolutions of the failure modes of sand grains within a sand specimen subject to compression for the particle breakage research. This paper attempts to deal with this challenge by conducting a discrete element method (DEM) simulation study on oedometric compression of two kinds of sands (spherical and non-spherical particles). In this study, particle morphologies reconstructed by the spherical harmonic (SH) analysis were created using the agglomerate method, and the micro-parameters used to define the contact model and the properties of walls and balls were adopted based on the single particle crushing tests. The effects of particle shape on the crushing behavior of granular materials and on the evolutions of failure modes of sand grains were captured, and the experimental data was used to evaluate the feasibility and reliability of the proposed DEM modelling strategy. The simulation results show that particle shape affects not only the number, type and orientation of cracks but also the evolution of the particle failure modes. The failure mode of chipping is the most common way to crush for both spherical and non-spherical particles. The particles that have less aspect ratio, sphericity and convexity are more likely to experience the failure mode of comminution. These findings shed light on the key role of particle shape in the investigation of the failure mode of sand grains and facilitate a better understanding of grain-scale behavior of granular materials.

Research Area(s)

  • Discrete element method, Failure mode, One-dimensional compression test, Particle shape