Delignified porous wood as biofilm support for 1,4-dioxane-degrading bacterial consortium

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)2541-2557
Journal / PublicationEnvironmental Technology (United Kingdom)
Volume45
Issue number13
Online published22 Feb 2023
Publication statusPublished - 2024
Externally publishedYes

Abstract

Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX. © 2023 Informa UK Limited, trading as Taylor & Francis Group.

Research Area(s)

  • biodegradation rate, Biofilm, fatty acids, hydrophilicity, porous wood, surface roughness

Citation Format(s)

Delignified porous wood as biofilm support for 1,4-dioxane-degrading bacterial consortium. / Samadi, Aryan; Kermanshahi pour, Azadeh; Beims, Ramon Filipe et al.
In: Environmental Technology (United Kingdom), Vol. 45, No. 13, 2024, p. 2541-2557.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review