Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

32 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1075-1083
Journal / PublicationChemosphere
Volume119
Online published14 Oct 2014
Publication statusPublished - Jan 2015
Externally publishedYes

Abstract

Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4 °C, 25 °C and 40 °C were >64 d, 30.5 d and 3.9 d, respectively. Similar half-lives were recorded for DCOIT: >64 d at 4 °C, 27.9 d at 25 °C and 4.5 d at 40 °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7 d and 6.8 d, respectively, compared with 9.7 d and 14.4 d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

Research Area(s)

  • Antifouling, Butenolide, DCOIT, Degradation kinetics, Toxicity

Citation Format(s)

Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. / Chen, Lianguo; Xu, Ying; Wang, Wenxiong et al.
In: Chemosphere, Vol. 119, 01.2015, p. 1075-1083.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review