Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

20 Scopus Citations
View graph of relations

Author(s)

  • Pei-Chun Wong
  • Pei-Hua Tsai
  • Tsung-Hsiung Li
  • Cheng-Kung Cheng
  • J.S.C. Jang

Detail(s)

Original languageEnglish
Pages (from-to)914-920
Journal / PublicationJournal of Alloys and Compounds
Volume699
Early online date4 Jan 2017
Publication statusPublished - 30 Mar 2017
Externally publishedYes

Abstract

MgZnCa-based alloys have great potential as implant materials due to their non-cytotoxicity, ease of degradation in the human body, and a low Young's modulus close to that of bone. However, there are few reports on their long-term degradation behavior and the mechanical properties resulting from degradation. This study thus aims to explore the long-term degradation behavior and mechanical strength of Mg60Zn35Ca5and Mg67Zn28Ca5bulk metallic glass (BMG) and its composites with Ti particles (BMGCs) before and after immersion in simulated body fluid (SBF). Rods of Mg60Zn35Ca5and Mg67Zn28Ca5BMG and their corresponding composites BMGCs have been prepared through an induction melting and injection casting method. Then, their degradation behavior, surface morphology, microstructure, mechanical properties, and biocompatibility have been systematically investigated. The results show that Mg60Zn35Ca5BMGC has the lowest degradation rate (0.26 mm/year) after 12 weeks of immersion. It has a compressive strength of 807 MPa initially and 154 MPa after 12 weeks of immersion. In this study, all samples are classed as slightly toxic based on the standard ISO 10993-5.

Research Area(s)

  • Biodegradable, Degradation behavior, Metallic glass, MgZnCa

Citation Format(s)

Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials. / Wong, Pei-Chun; Tsai, Pei-Hua; Li, Tsung-Hsiung; Cheng, Cheng-Kung; Jang, J.S.C.; Huang, J.C.

In: Journal of Alloys and Compounds, Vol. 699, 30.03.2017, p. 914-920.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review