Deeply Supervised Skin Lesions Diagnosis with Stage and Branch Attention

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

5 Scopus Citations
View graph of relations

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)719-729
Journal / PublicationIEEE Journal of Biomedical and Health Informatics
Volume28
Issue number2
Online published25 Aug 2023
Publication statusPublished - Feb 2024

Abstract

Accurate and unbiased examinations of skin lesions are critical for the early diagnosis and treatment of skin diseases. Visual features of skin lesions vary significantly because the images are collected from patients with different lesion colours and morphologies by using dissimilar imaging equipment. Recent studies have reported that ensembled convolutional neural networks (CNNs) are practical to classify the images for early diagnosis of skin disorders. However, the practical use of these ensembled CNNs is limited as these networks are heavyweight and inadequate for processing contextual information. Although lightweight networks (e.g., MobileNetV3 and EfficientNet) were developed to achieve parameter reduction for implementing deep neural networks on mobile devices, insufficient depth of feature representation restricts the performance. To address the existing limitations, we develop a new lite and effective neural network, namely HierAttn. The HierAttn applies a novel deep supervision strategy to learn the local and global features by using multi-stage and multi-branch attention mechanisms with only one training loss. The efficacy of HierAttn was evaluated by using the dermoscopy images dataset ISIC2019 and smartphone photos dataset PAD-UFES-20 (PAD2020). The experimental results show that HierAttn achieves the best accuracy and area under the curve (AUC) among the state-of-the-art lightweight networks. © 2023 IEEE.

Research Area(s)

  • Branch attention, Computational modeling, Convolution, Deep supervision, Feature extraction, Lesions, Skin, Skin lesions classification, Stage attention, Training, Transformers, Vision transformer, Attention, disease classification, skin lesion