Decoupling the simultaneous effects of NO2, pH and free nitrous acid on N2O and NO production from enriched nitrifying activated sludge

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

3 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number120609
Journal / PublicationWater Research
Volume245
Online published10 Sept 2023
Publication statusPublished - 15 Oct 2023

Link(s)

Abstract

In the pursuit of energy and carbon neutrality, nitrogen removal technologies have been developed featuring nitrite (NO2) accumulation. However, high NO2 accumulations are often associated with stimulated greenhouse gas (i.e., nitrous oxide, N2O) emissions. Furthermore, the coexistence of free nitrous acid (FNA) formed by NO2 and proton (pH) makes the consequence of NO2 accumulation on N2O emissions complicated. The concurrent three factors, NO2, pH and FNA may play different roles on N2O and nitric oxide (NO) emissions simultaneously, which has not been systematically studied. This study aims to decouple the effects of NO2 (0-200 mg N/L), pH (6.5-8) and FNA (0-0.15 mg N/L) on the N2O and NO production rates and the production pathways by ammonia oxidizing bacteria (AOB), with the use of a series of precisely executed batch tests and isotope site-preference analysis. Results suggested the dominant factors affecting the N2O production rate were NO2 and FNA concentrations, while pH alone played a relatively insignificant role. The most influential factor shifted from NO2 to FNA as FNA concentrations increased from 0 to 0.15 mg N/L. At concentrations below 0.0045 mg HNO2-N/L, nitrite rather than FNA played a significant role stimulating N2O production at elevated nitrite concentrations. The inhibition effect of FNA emerged with further increase of FNA between 0.0045-0.015 mg HNO2-N/L, weakening the promoting effect of increased nitrite. While at concentrations above 0.015 mg HNO2-N/L, FNA inhibited N2O production especially from nitrifier denitrification pathway with the level of inhibition linearly correlated with the FNA concentration. pH and the nitrite concentration regulated the production pathways, with elevated pH promoting the nitrifier nitrification pathway, while elevated NO2 concentrations promoting the nitrifier denitrification pathway. In contrast to N2O, NO emission was less susceptible to FNA at concentrations up to 0.015 mg N/L but was stimulated by increasing NO2 concentrations. This study, for the first time, distinguished the effects of pH, NO2 and FNA on N2O and NO production, thereby providing support to the design and operation of novel nitrogen removal systems with NO2 accumulation. © 2023 The Author(s)

Research Area(s)

  • Ammonia oxidizing bacteria (AOB), Free nitrous acid (FNA), N2O and NO emission, N2O production pathway, Nitrite, pH

Download Statistics

No data available