d-Band Center Optimization of Ti3C2Tx MXene Nanosheets for Ultrahigh NO2 Gas Sensitivity at Room Temperature
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 40846–40854 |
Journal / Publication | ACS Applied Materials and Interfaces |
Volume | 15 |
Issue number | 34 |
Online published | 15 Aug 2023 |
Publication status | Published - 30 Aug 2023 |
Link(s)
Abstract
MXene exhibits numerous advantageous properties such as high electronic conductivity, high surface area, and ease of surface modification via tailoring of functional groups. However, the mechanism by which MXene functionalization enhances gas sensing performance has not yet been well understood, let alone the development of a rational sensor design optimization strategy. This work presents a functionalization methodology for MXene based on d-band center modulation, which can be implemented by introducing Fe onto the surface of Ti3C2Tx nanosheets, for significantly improved gas sensing response and selectivity. The strategy is demonstrated in the design of gas sensors. The optimized gas sensor shows a response of 50% toward 10 ppm of NO2 at room temperature, which is over 6-fold improvement from its pristine counterpart, an unprecedented performance level among all reported MXene gas sensors. XPS characterizations, valence band analyses, and density functional theory (DFT) calculations all indicate that the underlying enhancement mechanism can be attributed to the tuning of the d-band center energy toward the Fermi level. This work provides a new design strategy based on the optimization of the d-band center energy and adds a much needed systematic and quantitative method to the design of two-dimensional materials based semiconducting gas sensors. © 2023 American Chemical Society.
Research Area(s)
- d-band center, MXene nanosheets, NO2 gas sensor, room temperature, surface functionalization
Citation Format(s)
d-Band Center Optimization of Ti3C2Tx MXene Nanosheets for Ultrahigh NO2 Gas Sensitivity at Room Temperature. / Wang, Ying; Fu, Jimin; Hu, Haibo et al.
In: ACS Applied Materials and Interfaces, Vol. 15, No. 34, 30.08.2023, p. 40846–40854.
In: ACS Applied Materials and Interfaces, Vol. 15, No. 34, 30.08.2023, p. 40846–40854.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review