David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number122848
Journal / PublicationPhysica A: Statistical Mechanics and its Applications
Volume545
Online published14 Oct 2019
Publication statusPublished - 1 May 2020

Abstract

We develop a fundamentally different stochastic dynamic programming model of trading costs. Built on a strong theoretical foundation, our model provides insights to market participants by splitting the overall move of the security price during the duration of an order into the Market Impact (price move caused by their actions) and Market Timing (price move caused by everyone else) components. We derive formulations of this model under different laws of motion of the security prices, starting with a simple benchmark scenario and extending this to include multiple sources of uncertainty, liquidity constraints due to volume curve shifts and relating trading costs to the spread. We develop a numerical framework that can be used to obtain optimal executions under any law of motion of prices and demonstrate the tremendous practical applicability of our theoretical methodology including the powerful numerical techniques to implement them. Our decomposition of trading costs into Market Impact and Market Timing allows us to deduce the zero sum game nature of trading costs. It holds numerous lessons for dealing with complex systems, wherein reducing the complexity by splitting the many sources of uncertainty can lead to better insights in the decision process.

Research Area(s)

  • Bellman equation, Dynamic programming, Execution, Implementation Shortfall, Market impact, Simulation, Stochastic, Trading cost, Uncertainty, Zero sum game

Bibliographic Note

Full text of this publication does not contain sufficient affiliation information. With consent from the author(s) concerned, the Research Unit(s) information for this record is based on the existing academic department affiliation of the author(s).