Data reduction for pattern recognition and data analysis

Tommy W.S. Chow, Di Huang

Research output: Chapters, Conference Papers, Creative and Literary WorksRGC 12 - Chapter in an edited book (Author)peer-review

9 Citations (Scopus)

Abstract

Pattern recognition [5, 13, 58] involves various human activities of great practical significance, such as data-based bankruptcy prediction, speech/image recognition, machine fault detection and cancer diagnosis. Clearly, it would be immensely useful to build machines to fulfill pattern recognition tasks in a reliable and efficient way. The most general and most natural pattern recognition frameworks mainly rely on statistical characterizations of patterns with an assumption that they are generated by a probabilistic system. Research on neural pattern recognition has been widely conducted during the past few decades. In contrast to statistical methods, no assumptions (a priori knowledge) are required for building a neural pattern recognition framework. Despite the fact that different pattern recognition systems use different working mechanisms, the basic procedures of all these systems are basically the same. A typical pattern recognition procedure generally consists of three sequential parts - a sensing model for collecting and preprocessing raw data from real sites, a data processing model (which includes feature extraction/selection and pattern selection), and a recognition/classificationmodel [13,58]. When one is handling a pattern recognition process, the following basic issues must be addressed: • How to process the raw data for a pattern recognition task? This issue concerns the sensing and preprocessing stage of pattern recognition; • How to determine appropriate data for a given pattern recognition model? This is a very important concern in the data processing stage. Deleting noisy or redundant data (including features and patterns) invariably leads to enhanced recognition performance; • How to design an appropriate classifier based on a given data set? This topic has been widely discussed in the pattern recognition community. Various learning algorithms and models have been proposed in an attempt to enhance recognition accuracy as much as possible, and in a fashion that is as simple as possible. © 2008 Springer-Verlag Berlin Heidelberg.
Original languageEnglish
Title of host publicationComputational Intelligence
Subtitle of host publicationA Compendium
PublisherSpringer 
Pages81-109
ISBN (Print)9783540782926
DOIs
Publication statusPublished - 2008

Publication series

NameStudies in Computational Intelligence
Volume115
ISSN (Print)1860-949X

Fingerprint

Dive into the research topics of 'Data reduction for pattern recognition and data analysis'. Together they form a unique fingerprint.

Cite this