Data-driven power system dynamic security assessment under adversarial attacks: Risk warning based interpretation analysis and mitigation

Zhebin Chen, Chao Ren, Yan Xu*, Zhao Yang Dong, Qiaoqiao Li

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

3 Citations (Scopus)
30 Downloads (CityUHK Scholars)

Abstract

Power system dynamic security assessment (DSA) has long been essential for protecting the system from the risk of cascading failures and wide-spread blackouts. The machine learning (ML) based data-driven strategy is promising due to its real-time computation speed and knowledge discovery capacity. However, ML algorithms are found to be vulnerable against well-designed malicious input samples that can lead to wrong outputs. Adversarial attacks are implemented to measure the vulnerability of the trained ML models. Specifically, the targets of attacks are identified by interpretation analysis that the data features with large SHAP values will be assigned with perturbations. The proposed method has the superiority that an instance-based DSA method is established with interpretation of the ML models, where effective adversarial attacks and its mitigation countermeasure are developed by assigning the perturbations on features with high importance. Later, these generated adversarial examples are employed for adversarial training and mitigation. The simulation results present that the model accuracy and robustness vary with the quantity of adversarial examples used, and there is not necessarily a trade-off between these two indicators. Furthermore, the rate of successful attacks increases when a greater bound of perturbations is permitted. By this method, the correlation between model accuracy and robustness can be clearly stated, which will provide considerable assistance in decision making. © 2023 The Authors. IET Energy Systems Integration published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Tianjin University.
Original languageEnglish
Pages (from-to)62-72
JournalIET Energy Systems Integration
Volume6
Issue number1
Online published7 Oct 2023
DOIs
Publication statusPublished - Mar 2024
Externally publishedYes

Research Keywords

  • power system stability
  • smart power grids

Publisher's Copyright Statement

  • This full text is made available under CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/

Fingerprint

Dive into the research topics of 'Data-driven power system dynamic security assessment under adversarial attacks: Risk warning based interpretation analysis and mitigation'. Together they form a unique fingerprint.

Cite this