Crystallization Behavior of Glass Bead-Filled Low-Density Polyethylene Composites

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

16 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)687-692
Journal / PublicationJournal of Applied Polymer Science
Issue number5
Publication statusPublished - 31 Jan 1999


The effects of the filler content and the filler size on the crystallization and melting behavior of glass bead-filled low-density polyethylene (LDPE) composites have been studied by means of a differential scanning calorimeter (DSC). It is found that the values of melting enthalpy (ΔHc) and degree of crystallinity (xc) of the composites increase nonlinearly with increasing the volume fraction of glass beads, φf, when φf is greater than 5%; the crystallization temperatures (Tc) and the melting temperatures (Tm) of the composites are slightly higher than those of the pure LDPE; the effects of glass bead size on xc, Tc, and Tm are insignificant at lower filler content; but the xc for the LDPE filled with smaller glass beads is obviously greater than that of the filled system with bigger ones at higher φf. It suggests that small particles are more beneficial to increase in crystallinity of the composites than big ones, especially at higher filler content. In addition, the influence of the filler surface pretreated with a silane coupling agent on the crystallization behavior are not too outstanding at lower inclusion concentration. © 1999 John Wiley & Sons, Inc.

Research Area(s)

  • Crystallization behavior, DSC, Glass bead, Low-density polyethylene