Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

19 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Pages (from-to)1796–1803
Journal / PublicationNano Research
Volume12
Issue number8
Online published22 May 2019
Publication statusPublished - Aug 2019

Abstract

Amorphous indium—gallium—zinc oxide (a-IGZO) materials have been widely explored for various thin-film transistor (TFT) applications; however, their device performance is still restricted by the intrinsic material issues especially due to their non-crystalline nature. In this study, highly crystalline superlattice-structured IGZO nanowires (NWs) with different Ga concentration are successfully fabricated by enhanced ambient-pressure chemical vapor deposition (CVD). The unique superlattice structure together with the optimal Ga concentration (i.e., 31 at.%) are found to effectively modulate the carrier concentration as well as efficiently suppress the oxygen vacancy formation for the superior NW device performance. In specific, the In1.8Ga1.8Zn24O7 NW field-effect transistor exhibit impressive device characteristics with the average electron mobility of ~ 110 cm2·V−1·s−1 and on/off current ratio of ~ 106. Importantly, these NWs can also be integrated into NW parallel arrays for the construction of high-performance TFT devices, in which their performance is comparable to many state-of-the-art IGZO TFTs. All these results can evidently indicate the promising potential of these crystalline superlattice-structured IGZO NWs for the practical utilization in next-generation metal-oxide TFT device technologies. [Figure not available: see fulltext.].

Research Area(s)

  • InGaZnO, nanowires, superlattice, thin-film transistors