Cross-impingement and combustion of sprays in high-pressure chamber and opposed-piston compression ignition engine

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

14 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)137-146
Journal / PublicationApplied Thermal Engineering
Publication statusPublished - 5 Nov 2018
Externally publishedYes


Spray cross-impingement in a high-pressure chamber (10–30 atm) was studied experimentally, the results being compared to the spray opposed-impingement. The comparison was subsequently extended to the spray combustion in a model opposed-piston compression ignition engine. To account for the ambient pressure effects in collision outcomes, a recently proposed pressure-dependent droplet collision model was implemented in the KIVA-3V computer program for simulating the experiments. Compared with the widely used Estrade et al.’s and O'Rourke's models, the pressure-dependent model produces satisfactory predictions to spray characteristics. The uncertainty of the kinetic energy recovery coefficient, which affects the post-collision characteristics of bouncing droplets, was found to cause insignificant difference in model predictions. In the high-pressure chamber, droplet collisions in cross-impingement occur earlier than those in the opposed-impingement and result in more coalescence, consequently producing larger droplet sizes. With increasing the ambient pressure, the increasing tendency of droplet bouncing diminishes the difference of these two spray impingements. In the model OPCI, the presence of strong swirling flow deflects sprays from impingement and therefore the opposed-impingement shows slightly better combustion performance by producing more spatially uniform droplet distribution. However, the spray cross-impingement enhances droplet collision hence promotes atomization in the absence of swirling flow.

Research Area(s)

  • Droplet bouncing, High-pressure chamber, Kinetic energy recovery coefficient, Opposed-piston compression ignition, Spray impingement

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to