Creep induced rate effects on radial cracks in multilayered structures

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

15 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)65-69
Journal / PublicationJournal of Materials Science: Materials in Medicine
Volume18
Issue number1
Publication statusPublished - Jan 2007
Externally publishedYes

Abstract

This paper considers foundation and epoxy creep induced loading rate effects on radial cracks in multilayered structures. These include top layers of glass or silicon that are bonded to polycarbonate foundations with epoxy. The creep properties of the epoxy join and the polycarbonate foundation are determined using compression experiments and spring-dashpot models. The measured creep parameters are then incorporated into an analytical mechanics model, and finite element simulations are used to predict the effects of creep on the critical loads for radial cracking at different loading rates. The models suggest that the combined effects of creep and slow crack growth must be considered in the predictions of the critical loads required for radial cracking in the systems containing glass top layers. Since slow crack growth does not occur in silicon, the model considering the creep effect is used to predict the critical loads for radial cracking in the systems containing silicon top layers. In both of the structures, analytical solutions are obtained for bi-layer structures and finite element simulations are used for tri-layer structures. Our results show that the analytical solutions obtained by bi-layer structures provide good estimations for tri-layer structures when the epoxy thickness is less than 100 μm. The predictions obtained for both systems are shown to provide improved predictions by comparing with experimental results reported by Lee et al. [J. Am. Ceram. Soc., 2002, 85(8), 2019-2024]. In both systems, the modeling of join/substrate creep is shown to be important for the accurate prediction of loading rate effects on radial cracking. © 2006 Springer Science + Business Media, LLC.