TY - JOUR
T1 - CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm-2 with InP Colloidal Quantum Dot Derived Catalysts
AU - Grigioni, Ivan
AU - Sagar, Laxmi Kishore
AU - Li, Yuguang C.
AU - Lee, Geonhui
AU - Yan, Yu
AU - Bertens, Koen
AU - Miao, Rui Kai
AU - Wang, Xue
AU - Abed, Jehad
AU - Won, Da Hye
AU - Garciá de Arquer, F. Pelayo
AU - Ip, Alexander H.
AU - Sinton, David
AU - Sargent, Edward H.
PY - 2021/1/8
Y1 - 2021/1/8
N2 - We report formate production via CO2 electroreduction at a Faradaic efficiency (FE) of 93% and a partial current density of 930 mA cm-2, an activity level of potential industrial interest based on prior techno-economic analyses. We devise a catalyst synthesized using InP colloidal quantum dots (CQDs): The capping ligand exchange introduces surface sulfur, and XPS reveals the generation, operando, of an active catalyst exhibiting sulfur-protected oxidized indium and indium metal. Surface indium metal sites adsorb and reduce CO2 molecules, while sulfur sites cleave water and provide protons. The abundance of exposed surface indium sites per quantum dot enables the high formate productivity achieved at low catalyst loadings. The high conductivity of the layer of nanoparticles under negative potential sustains the large current densities.
AB - We report formate production via CO2 electroreduction at a Faradaic efficiency (FE) of 93% and a partial current density of 930 mA cm-2, an activity level of potential industrial interest based on prior techno-economic analyses. We devise a catalyst synthesized using InP colloidal quantum dots (CQDs): The capping ligand exchange introduces surface sulfur, and XPS reveals the generation, operando, of an active catalyst exhibiting sulfur-protected oxidized indium and indium metal. Surface indium metal sites adsorb and reduce CO2 molecules, while sulfur sites cleave water and provide protons. The abundance of exposed surface indium sites per quantum dot enables the high formate productivity achieved at low catalyst loadings. The high conductivity of the layer of nanoparticles under negative potential sustains the large current densities.
UR - http://www.scopus.com/inward/record.url?scp=85097768926&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85097768926&origin=recordpage
U2 - 10.1021/acsenergylett.0c02165
DO - 10.1021/acsenergylett.0c02165
M3 - RGC 21 - Publication in refereed journal
SN - 2380-8195
VL - 6
SP - 79
EP - 84
JO - ACS Energy Letters
JF - ACS Energy Letters
IS - 1
ER -