Controlling dynamic reconstruction chemistry for superior oxygen-evolving catalysts

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

5 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)1645-1657
Journal / PublicationChem
Online published5 Jul 2023
Publication statusPublished - 13 Jul 2023


Catalyst reconstruction redefines the in-situ-formed active species that are dynamically interacting with reactants and electrolytes, thus determining the catalytic activity and stability. Despite the frequent reports of (engineered) catalyst reconstruction, reconstruction chemistry of many electrocatalysts is still elusive, and precise control of catalyst reconstruction remains challenging. Further advancing catalyst reconstruction warrants the clarification and control of the reconstruction chemistry (e.g., pathway, extent, heterogeneity, and kinetics), which requires innovatively designing the pre-catalyst, precisely engineering the electrochemical conditions, and rigorously establishing the structure-property-performance relationship. For that, this work analyzes the most recent ©understanding and modulation of dynamic reconstruction chemistry for representative oxygen evolution reaction (OER) catalysts in various (i.e., alkaline, acidic, neutral, and complex) electrolytes. Moreover, we summarize the challenges and discuss future opportunities for controlling reconstruction chemistry for developing superior OER catalysts, which can also provide significant references for other electrocatalytic reactions. © 2023 Elsevier Inc.

Research Area(s)

  • oxygen evolution reaction, electrocatalyst, reconstruction chemistry, modulation, various electrolytes